
20-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Quiz #1.

● Assignment #1 due.

● Bounding volumes.
• Overview
• Creation
• Intersection

● Assignment #2 assigned.

20-October-2007 © Copyright Ian D. Romanick 2007

What about convex hulls?
Putting them off until later in the term.

● For 3D hulls, we really need some data structures
that we haven't covered yet.

● I'm going to bump space partitioning by a couple
weeks.

● Move polygon representation up.

● Insert convex hulls.

Updated sylabus available on-line.
● Please refer to it for updated reading assignments.

● You are doing the reading, right?

20-October-2007 © Copyright Ian D. Romanick 2007

Bounding Volume Hierarchies
BVs containing BVs containing BVs etc.

Arrange BVs in a tree-like structure.
● Each larger BV stores references to its immediate

sub-BVs.

Similar to space partitions, but some key
differences.
● Multiple BVs at the same level of the tree may

occupy the same space.

● Objects typically only stored in one BV.

20-October-2007 © Copyright Ian D. Romanick 2007

Parentchild Property
Each parent BV

contains its child BVs.
● Makes things easier.

● Not required!
• Parent BV need only

contain the objects in
the child BVs.

• Top level circle (right)
contains all boxes, but
not all sub-circles.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BVH Characteristics
The nodes within any subtree should be “near”

each other.
● Farther down in the tree, the nodes should be

nearer.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BVH Characteristics
The nodes within any subtree should be “near”

each other.
● Farther down in the tree, the nodes should be

nearer.

Each node should be of minimal volume.
● Just like BVs!

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BVH Characteristics
The nodes within any subtree should be “near”

each other.
● Farther down in the tree, the nodes should be

nearer.

Each node should be of minimal volume.
● Just like BVs!

Nodes near the root are more important than
nodes near the leaves.
● Prune as many objects as soon as possible.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics (cont.)
Volume overlap of sibling nodes should be

minimal.
● Overlap may force traversal of multiple subnodes.

Yuck!

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics (cont.)
Volume overlap of sibling nodes should be

minimal.
● Overlap may force traversal of multiple subnodes.

Yuck!

Hierarchy should be balanced w.r.t. node
structure and content.
● Balanced structure is just like regular search trees.

● Balanced content (i.e., number of objects in
subtrees) allows earlier pruning of objects from
consideration.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics (cont.)
Worst case performance should not be much

worse than average case.
● Want to avoid sudden drops in framerate.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics (cont.)
Worst case performance should not be much

worse than average case.
● Want to avoid sudden drops in framerate.

Generate without human intervention.
● Automatically generate BVH from data without

artists or (worse) programmers having to help it / do
the work.

20-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics (cont.)
Worst case performance should not be much

worse than average case.
● Want to avoid sudden drops in framerate.

Generate without human intervention.
● Automatically generate BVH from data without

artists or (worse) programmers having to help it / do
the work.

Memory usage should be low.
● Just like BVs.

20-October-2007 © Copyright Ian D. Romanick 2007

BV Cost

N
v
 – number of volume-volume tests

C
v
 – cost of volume-volume test

N
p
 & C

p
 – number & cost of primitive tests

N
u
 & C

u
 – number & cost of node updates

C
o
 – fixed, one-time cost (i.e., translate one

BVH to the other BVHs coordinate space).

T=N vCvN pC pNuCuCo

20-October-2007 © Copyright Ian D. Romanick 2007

BV Cost (cont.)
Why is this important to think about?

20-October-2007 © Copyright Ian D. Romanick 2007

BV Cost (cont.)
Why is this important to think about?

● All of the values are interrelated.

• Decreasing BV's volume may reduce N
v
 but increase C

v
.

● Typically C
p
 ≫ C

v
.

• Decreasing N
p
 at the expense of increasing N

v
 is

generally a win.

● Generally, gives a framework to compare the
expected performance of different BVHs.

20-October-2007 © Copyright Ian D. Romanick 2007

Tree Degree
What is “tree degree”?

20-October-2007 © Copyright Ian D. Romanick 2007

Tree Degree
What is “tree degree”?

● Number of branches (children) from each node.

What difference does it make?

20-October-2007 © Copyright Ian D. Romanick 2007

Building a BVH
Three common strategies for building trees.

20-October-2007 © Copyright Ian D. Romanick 2007

Building a BVH
Three common strategies for building trees.

1. Insertion – Build the hierarchy incrementally by
adding one element at a time.

20-October-2007 © Copyright Ian D. Romanick 2007

Building a BVH
Three common strategies for building trees.

1. Insertion – Build the hierarchy incrementally by
adding one element at a time.

2. Top-down – Recursively subdivide the data into
subnodes.
• Really easy to implement.
• Doesn't result in the best tree.

20-October-2007 © Copyright Ian D. Romanick 2007

Building a BVH
Three common strategies for building trees.

1. Insertion – Build the hierarchy incrementally by
adding one element at a time.

2. Top-down – Recursively subdivide the data into
subnodes.
• Really easy to implement.
• Doesn't result in the best tree.

3. Bottom-up – Group leaf nodes together repeatedly
until there's only one node left.
• Most complicated to implement.
• Results in better trees than top-down.

20-October-2007 © Copyright Ian D. Romanick 2007

Topdown
BVHNode *build_BVH(Entity *e, int num_e)
{
 BoundingVolume *bv = new BoundingVolume(e, num_e);
 BVHNode *node = new BVHNode(bv);

 if (num_entity < threshold) {
 node->is_leaf = true;
 } else {
 int first_half_count = divide_entities(e, num_e);
 node->child[0] = build_BVH(& e[0],
 first_half_count);
 node->child[1] = build_BVH(& e[first_half_count],
 num_e - first_half_count);
 }

 return node;
}

20-October-2007 © Copyright Ian D. Romanick 2007

Topdown Partitioning
The lynch pin in the whole deal is
divide_entities.
● As coded, assumes each entity will be in exactly

one set.

●Not the only strategy.

How do we decide where to divide the set?

20-October-2007 © Copyright Ian D. Romanick 2007

Topdown Partition Strategies
 “Median-cut” is a common strategy.

● Select an axis.
• Long axis of the OBB, AABB, k-DOP, etc. is a common

choice.

● Project all entities onto this axis and sort by
position.

● The first half is one subnode, and the second half is
the other subnode.

20-October-2007 © Copyright Ian D. Romanick 2007

Median Cut
Median cut is easy to implement, but has

problems:

20-October-2007 © Copyright Ian D. Romanick 2007

Other Partitioning Strategies
Other heuristics:

● Minimize sum of volumes

● Minimize largest volume

● Minimize intersection volume

● Maximize child node separation

 In reality, no one heuristic is perfect.
● Implement a primary and adjust if the next heuristic

scores poorly.

● Repeat for all heuristics or until a heuristic passes
without adjustment.

20-October-2007 © Copyright Ian D. Romanick 2007

Partitioning Axis Selection
 Infinite number of possible partitioning axes.

● Like the problem of selecting the basis for OBB.

20-October-2007 © Copyright Ian D. Romanick 2007

Partitioning Axis Selection
 Infinite number of possible partitioning axes.

● Like the problem of selecting the basis for OBB.

Aligned axes of BV type.
● Local X, Y, Z axes, k-DOP axes, etc

20-October-2007 © Copyright Ian D. Romanick 2007

Partitioning Axis Selection
 Infinite number of possible partitioning axes.

● Like the problem of selecting the basis for OBB.

Aligned axes of BV type.
● Local X, Y, Z axes, k-DOP axes, etc

Axes of parent BV.
● Create OBB of objects in parent, use these axes.

20-October-2007 © Copyright Ian D. Romanick 2007

Partitioning Axis Selection
 Infinite number of possible partitioning axes.

● Like the problem of selecting the basis for OBB.

Aligned axes of BV type.
● Local X, Y, Z axes, k-DOP axes, etc

Axes of parent BV.
● Create OBB of objects in parent, use these axes.

Axis through most distant points.
● Approximate with most separated points on AABB.

20-October-2007 © Copyright Ian D. Romanick 2007

Partitioning Axis Selection
 Infinite number of possible partitioning axes.

● Like the problem of selecting the basis for OBB.

Aligned axes of BV type.
● Local X, Y, Z axes, k-DOP axes, etc

Axes of parent BV.
● Create OBB of objects in parent, use these axes.

Axis through most distant points.
● Approximate with most separated points on AABB.

Axis of greatest variance.

20-October-2007 © Copyright Ian D. Romanick 2007

Split Point
Once an axis is selected, how is a split point on

the axis selected?

20-October-2007 © Copyright Ian D. Romanick 2007

Split Point
Once an axis is selected, how is a split point on

the axis selected?

Several common ways:
● Median of projected object centroids.

● Mean of projected object centroids.

● Median of projected BV extents.

● Pick best of n evenly spaced points along axis.

20-October-2007 © Copyright Ian D. Romanick 2007

Bottomup
More complex to implement.

Slower.

But usually results in better BHVs.
● If it runs as a pre-process, it probably doesn't matter

that it's slower.

20-October-2007 © Copyright Ian D. Romanick 2007

Bottomup
Create a BV for each object.

● Store these BVs in an “active” list.

Select 2 or more BVs to merge.
● Remove old BVs from active list.

● Add new parent BV to active list.

Lather, rinse, repeat until only one BV remains
in active list.
● This is the root of the BVH.

20-October-2007 © Copyright Ian D. Romanick 2007

Merging Strategy
The lynch pin here is the method used to select

nodes to merge.

20-October-2007 © Copyright Ian D. Romanick 2007

Merging Strategy
The lynch pin here is the method used to select

nodes to merge.

Brute force: find pair of nodes in active list that
merge to form least-volume BV.
● O(n2) for the search, must be repeated (n-1) times

results in O(n3). Ouch.

● Heuristic other than least-volume can be used.

20-October-2007 © Copyright Ian D. Romanick 2007

Improved Merging Strategy
Use brute force as basis of improved method.

● For each node, calculate the best node for it to pair
with.
• Store both nodes and the resulting volume in a priority

queue.

● Loop, removing head node from queue.
• Validate stored size.

● May have changed if either node was previously removed.

• If size still smallest, calculate pairing for new node, insert
in queue.

• If size not still smallest, re-insert in queue.

20-October-2007 © Copyright Ian D. Romanick 2007

Insertion
Find location to insert node with least cost.

● Cost metric is typically along the lines of volume
added to BV and all parent BVs.

● Large objects will be inserted near the top of the
tree, small objects will be inserted near the bottom.

● Far away objects will be inserted near the top of the
tree.

20-October-2007 © Copyright Ian D. Romanick 2007

Insertion Strategies
1.Pick the child node with the least insertion cost,

recurse on that child.
● Search cost is O(lg n), with n searches. Total cost

is O(n lg n).

2.Use best-first search of entire tree.
● Search cost is worst case O(n), with n searches.

Worst case cost is O(n2), O(n lg n) typical case.
●May be more expensive.

● Results in better tree.
• Uses global information instead of just local information.

20-October-2007 © Copyright Ian D. Romanick 2007

GoldsmithSalmon Incremental Method
Developed for ray tracing.

Cost of tree is proportional to surface area of all
nodes.

 Insert primitive in subtree with least added cost.
● Object and leaf node are paired under new node: C =

2 × Area(new node).

● Object added as child of existing node: C = k ×
(Area(new node) – Area(old node)) + Area(new node).

● Object added lower in tree: C = k × (Area(new node)
– Area(old node))

20-October-2007 © Copyright Ian D. Romanick 2007

Break

20-October-2007 © Copyright Ian D. Romanick 2007

Traversal
Same traversal orders as “regular” trees:

20-October-2007 © Copyright Ian D. Romanick 2007

Traversal
Same traversal orders as “regular” trees:

● Depth first – uninformed search that progresses by
expanding the first child node of the search tree that
appears and thus going deeper and deeper until a
goal node is found, or until it hits a node that has no
children. Then the search backtracks, returning to
the most recent node it hadn't finished exploring.

20-October-2007 © Copyright Ian D. Romanick 2007

Traversal
Same traversal orders as “regular” trees:

● Depth first – uninformed search that progresses by
expanding the first child node of the search tree that
appears and thus going deeper and deeper until a
goal node is found, or until it hits a node that has no
children. Then the search backtracks, returning to
the most recent node it hadn't finished exploring.

● Breadth first – Begins at the root node and explores
all the neighboring nodes. Then for each of those
nearest nodes, it explores their unexplored
neighbour nodes, and so on, until it finds the goal.

Definitions from wikipedia.org.

20-October-2007 © Copyright Ian D. Romanick 2007

Examples

20-October-2007 © Copyright Ian D. Romanick 2007

Informed Traversal
Best-first search – like breadth-first, but explore

the “most promising” unexplored node first.

20-October-2007 © Copyright Ian D. Romanick 2007

BestFirst Search
BVNode *BVNode::search(BoundingVolume *bv)
{
 BVPriorityQueue q;

 q.insert(this, bv);
 do {
 BVNode *curr = q.dequeue();
 if (curr.is_leaf()) {
 if (curr.test_primitives(bv))
 return curr;
 } else {
 q.insert(curr.child[0], bv);
 q.insert(curr.child[1], bv);
 }
 } while (!q.empty());

 return NULL;

}

20-October-2007 © Copyright Ian D. Romanick 2007

BVH / BVH Intersection
Search is different because we are comparing

two trees.

20-October-2007 © Copyright Ian D. Romanick 2007

Basic Recursive Version
CollisionResult *BVHNode::collision(BVHNode *other)
{
 if (!this->bv.intersect(other->bv))
 return NULL;

 if (is_leaf() && other->is_leaf()) {
 return collide_primitives(other);
 } else {
 if (this->descend(other)) {
 result = child[0]->collision(other);
 if (result == NULL)
 result = child[1]->collision(other);
 } else {
 result = other->child[0]->collision(this);
 if (result == NULL)
 result = other->child[1]->collision(this);
 }
 return result;
 }
}

20-October-2007 © Copyright Ian D. Romanick 2007

Basic Recursive Version (cont.)
BVHNode::descend is the key.

● Making good decisions about which BVH to
descend can make a big difference in performance.

● Should be very simple.
• Descend the non-leaf node.
• Descend the non-leaf node with largest volume.
• Descend the non-leaf node with fewest subnodes.
• Etc.

Recursion makes the routine easy to
understand but very inefficient.

20-October-2007 © Copyright Ian D. Romanick 2007

Simultaneous Recursive Version
We really want to descend both trees

simultaneously.

Doing so can eliminate some tests.
● In a worst-case tree, the simultaneous version will

perform 2/3rds as many tests.

20-October-2007 © Copyright Ian D. Romanick 2007

Simultaneous Recursive Version
CollisionResult *BVHNode::collision(BVHNode *other)
{
 if (!this->bv.intersect(other->bv)) return NULL;

 if (is_leaf()) {
 if (other->is_leaf()) {
 return collide_primitives(other);
 } else {
 result = other->child[0]->collision(this);
 if (result == NULL) result = other->child[1]->collision(this);
 }
 } else {
 if (other->is_leaf()) {
 result = child[0]->collision(other);
 if (result == NULL) result = child[1]->collision(other);
 } else {
 result = child[0]->collision(other->child[0]);
 if (result == NULL) result = child[0]->collision(other->child[1]);
 if (result == NULL) result = child[1]->collision(other->child[0]);
 if (result == NULL) result = child[1]->collision(other->child[1]);
 }
 return result;
 }
}

20-October-2007 © Copyright Ian D. Romanick 2007

Break

20-October-2007 © Copyright Ian D. Romanick 2007

OBB Trees
Construct top-level OBB using PCA.

Split along the longest axis.
● Split at mean of the object vertexes projected onto

the split axis.

● If a primitive straddles the split, put it in the subnode
containing its centroid.

● If that split fails to reduces the number of objects in
the child nodes or create two non-empty nodes,
select one of the other axes.

20-October-2007 © Copyright Ian D. Romanick 2007

OBBs Evaluation
OBBs make a good fit.

● If O(m) OBBs would be required, typically O(m2)
spheres or AABBs would be required.

N
v
 and N

p
 tend to me smaller for OBB trees

than AABB or sphere trees.

C
v
 is about an order of magnitude slower.

20-October-2007 © Copyright Ian D. Romanick 2007

AABB Trees
Like OBB tree, construct top-down.

Split along longest axis.
● Split at the midpoint of the axis.

● If a primitive straddles the split, put it in the subnode
containing its centroid.

● If all primitives end up in one subnode, re-split by
primitive medians.

Some speed up from only performing 6 of the
15 rotated AABB tests.
● More false positives but still a win.

20-October-2007 © Copyright Ian D. Romanick 2007

BoxTrees
Similar to AABB trees.

● Subdivide each node to directly form the new
AABBs.

● Primitives that straddle the split are put in both
subnodes.
• Try all three axes to find the one that causes the fewest

straddles.

● For testing, rotate AABBs to form OBBs.
• All nodes share the same coordinate space, so the same

15 OBB testing axes can be reused.

20-October-2007 © Copyright Ian D. Romanick 2007

Sphere Trees via Octree
Build octree:

● Create axis-aligned bounding cube.

● Recursively subdivide cube into 8 subcubes.

● Prune away empty cubes.

● Halt when predefined depth reached or subdivision
fails to separate polygons.

Create sphere centered at each cube.

20-October-2007 © Copyright Ian D. Romanick 2007

kDOP Trees
Similar to AABB & OBB methods.

Most research seems to indicate:
● Split along axis that minimizes the sum of volumes.

● Various numbers of axes work in different
situations.
• Some say 3 (AABB), some 9 (18-DOP), some 12 (24-

DOP).

● Required storage is high.
• 170k triangles required 69MiB

20-October-2007 © Copyright Ian D. Romanick 2007

Other
Possible to combine multiple BVs:

● k-DOPs near the root, AABBs near the leaves.

● AABBs at all levels except leaves, k-DOPs or
spheres at the leaves.

● Etc.

Little research has been done in this area.
● Might be a good way for an undergrad to get

published. ;)

20-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Finish BVHs

● Merging

● Data layout tuning

Polygon representation

Convex hulls

Assignment #2 due.

Assignment #3 assigned.

20-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

